Home Syllabus Mathematics – I

Mathematics – I

493
0

This course contains aims to provide students with an opportunity to review basic mathematical tools necessary for computer information system core courses.

Unit I: Sets ————————————————————————- 6 hours
    1. Introduction
    2. Types of sets
    3. Venn diagram
    4. Number of elements in a set.
Unit II: Real Numbers ———————————————————– 7 hours
    1. Types of real numbers
    2. Absolute value of real numbers
    3. Open and close intervals
    4. Linear inequality their graph
    5. Mathematical induction.
Unit III: Limits & Continuity ————————————————– 8 hours
    1. Introduction
    2. Limit of a function
    3. Techniques of finding limits
    4. Continuity &discontinuity
    5. Demand & Profit function.
Unit IV: Differentiation ——————————————————— 7 hours
    1. Introduction
    2. Techniques of differentiation
    3. Derivative of algebraic
    4. Exponential
    5. Logarithmic
    6. Simple trigonometric functions
    7. Higher order derivative
    8. Application of derivative
    9. Increasing & Decreasing function
    10. Maxima & minima of function of one variable
    11. Concavity of the function
    12. Inflection point
    13. Average cost & Marginal cost
    14. Average revenue & marginal revenue
    15. Profit maximization under perfect competition
    16. Profit maximization under monopoly.
Unit V: Functions of Several Variable —————————————- 7 hours
    1. Introduction
    2. Partial derivative
    3. Homogeneous function
    4. Euler’s theorem
    5. Differentiation
    6. Second & Higher order differentials
    7. Implicit functions.
Unit VI: Symbolic Logics ——————————————————- 6 hours
    1. Introduction
    2. Statements
    3. Logical connectives
    4. Conjunction
    5. Disjunction
    6. Negation
    7. Conditional or Implication
    8. Bi -conditional
    9. Logical equivalence
    10. Negation of compound events
    11. Tautology & contradiction
Unit VII: Asymptotes ———————————————————— 7 hours
    1. Introduction
    2. Determination of asymptotes of algebraic curves
    3. Vertical asymptotes
    4. Horizontal asymptotes
    5. Oblique asymptotes
    6. Asymptotes of Algebraic curves
    7. Asymptotes of curve in polar coordinates.

Text Books:

    1. Yamane, Taro; Mathematics for Economist, Prentice Hall of India.
    2. Chaing, Alpha C.: Fundamental Methods of Mathematical Economics, McGraw Hill International.

Reference Book:

    1. B.C. Das & N.B. Mukharjee Differential Calculus.

LEAVE A REPLY

Please enter your comment!
Please enter your name here